
Opportunity Cost of

Technical

Minimize Your
Rich Text Editor
Development Debt

1.0 Introduction

All Successful Technology has
Debt

As they say, money talks.

So by saying you have technical debt, you’ve achieved an implied level

of success.

It means the product in question is being bought, used, and requires rapid

change to support revenue hypergrowth, user demands or product-market

�t. But, there’s a sticky trap: innovation and development go hand-in-hand

with technical debt.

In the pursuit of delivering more, faster, your development teams and

infrastructure are taking on tech debt. And, the time soon arrives where that

debt outranks your growth projects; it begins slowing development and

delaying new releases.

Every bug and payo� task carries an opportunity cost.

Whenever your Dev team spends time and resources on those payo� tasks

(upgrading, refactoring, repairing), they’re pursuing fewer software

improvements and innovations. The potential monetary value yielded from

those innovations, is forfeited.

According to Stripe’s Developer Coe�cient report, 42% of every developers’

working week is spent dealing with technical debt (13.5 hrs) and bad code

(3.8 hrs), which equates to nearly $85 billion worldwide in opportunity cost

lost annually. That’s a huge chunk of development time and money.

https://stripe.com/files/reports/the-developer-coefficient.pdf

Source

(page 5)

The report goes on to say that with “…the number of developers increasing

year-over-year at most companies, developers working on the right things

can accelerate a company’s move into new markets or product areas and

help companies di�erentiate themselves at disproportionate rates.”

Perhaps then, the post-pandemic software challenge isn’t more new

products and features… it’s the ability to walk the tightrope between

technical debt and innovation. Too much debt, sucks energy away from

innovation and slows growth. Opportunities are lost. Too little debt, and your

ability to scale fast, ship fast, and test in-market can be stifled. Value to your

users slows.

https://stripe.com/files/reports/the-developer-coefficient.pdf
https://www.infoworld.com/article/3635708/technical-debt-will-sink-you.html

Kelly Sutton
Software Engineer

In conversations and writing around
technical debt, folks stretch the metaphor.
We dive deep into the finance comparisons,
we analyze its softer costs, or we just
throw our hands up and claim it doesn’t
exist. […] To get others in your
organization, whether it be your manager
or her manager or someone in finance, you
need to have a common language.

This becomes especially important when
discussing opportunity cost. How do you rank
technical debt projects against growth
projects? At a certain point, we need
to quantify “Slowing down development time.”

Tech Debt Defined

According to Techopedia,

“Technical debt

is a concept

in programming that

reflects the extra

development work that

arises when code that

is easy to implement in the

short run is used instead

of applying the best overall

solution.”

Wherever technical debt lives, decisions are framed by that debt.

Stakeholder debates rage over whether to manage the debt or become

a dead company with pristine code. Meetings echo with refrains like “Yes,

we should do something about the tech debt, but we can’t a�ord

to do it now”. Then there’s the development work you’ve taken on that’s

beyond your team’s core skill set — building complex components that carry

greater risk of build blowouts and debt accrual — that have mushroomed

your debt levels.

What’s the answer?

Smart organizations are �nding ways to sidestep making their debt hole

deeper. Their tech debt management plan includes scoping, sourcing and

maintaining a reusable tech stack that includes components with built-in

scalability.

They’re minimizing their ‘owned’ tech debt by buying, assembling and

integrating those complex components, from specialists.

So someone else carries the tech debt load.

https://twitter.com/kellysutton
https://www.techopedia.com/definition/27913/technical-debt
https://www.tiny.cloud/buy-vs-build-whitepaper/

2.0 The Speed of Change

2.1

Does Being Agile Increase Tech
Debt?

Technical debt is hard to avoid.

It’s part of the air that every software developer breathes.

As McKinsey says, “Technical debt is like dark matter: you know it exists, you

can infer its impact, but you can’t see or measure it. Product delays, hidden

risks, spiraling costs, and even engineers leaving in frustration are all

common symptoms.”

Another characterization — the ‘o�-balance-sheet’ accumulation of future

development work — doesn’t sound so bad, but it’s almost invisible bloat

(especially to non-technical stakeholders) can cripple your long-term ability

to deliver value to users.

Tech debt is a ceaseless, clingy cycle.

As software proliferates, enterprises push harder towards digital

transformation. They jostle to increase their agility, keep pace with software-

based innovation and customer expectations. That forces accelerated

development timeframes and debt accumulation.

Agile product and engineering teams struggle to meet the demands

of modern architectures and edge cases (especially those outside their core

skill), and cycle through hit-and-miss release schedules at breakneck speed

to build secure, reliable applications.

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt

Source

$1.31T
estimated software

technical debt

(principal only, not

including interest) in

2020

Let’s attach some hard numbers to the issue.

A 2020 report from the Consortium for Information & Software Quality

(CISQ) calculated the Total Cost of Poor Software Quality (CPSQ) in the

United States to be $2.08 trillion (T). For comparison, only a dozen countries

have an annual GDP of $2 trillion or more.

The same report noted that the 2020 estimated software technical debt

was $1.31 trillion (principal only, not including interest), as an additional

future cost. Those costs have been increasing at a rate of 14% since 2018.

https://medium.com/the-liberators/how-to-deal-with-technical-debt-in-scrum-f4ec3481eabb
https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report.htm

Source

(Page 4)

Tech debt is

20-40%
of the total value of

their entire technology

estate

The magnitude of the issue feels worse, when it’s in your own sandbox.

A McKinsey study in 2022 reported that “Some 30 percent of CIOs

we surveyed believe that more than 20 percent of their technical budget

ostensibly dedicated to new products, is diverted to resolving issues related

to tech debt. Furthermore, they estimate that tech debt amounts

to 20 to 40 percent of the value of their entire technology estate (before

depreciation).”

When more and more is spent on refactoring, it slows product innovation.

And it lowers morale. That’s not what your Dev team signed up for — they

want to work on meaningful projects.

As a long-time product leader, David Pereira recognised the issue in a recent

article, “Ignoring tech debt is the right way of building a product

no developer wants to work with. […] Building a scalable product requires

a strategy. It’s impossible to keep a product maintainable if the only thing

you do is adding more features to it. Yet, it doesn’t mean you should build

everything scalable from the beginning.”

The trick is knowing what to build, what to buy and what specialists to tap.

https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt
https://medium.com/serious-scrum/how-to-deal-with-tech-debt-effectively-a28a4d4bb291

Who Invented the
Term Technical
Debt?

Ward Cunningham, the

developer of the �rst wiki

and co-author of the Agile

Manifesto, �rst explained

and aligned technical debt,

using the metaphor

of �nancial debt.

The principal part of your

technical debt is the time

saved during initial

implementation, while the

interest is the additional

time, quality, and risk costs

incurred until it’s resolved.

Taking on complex, costly code work that’s outside your dev team’s strategic

focus, often produces shortcuts, low-quality, temporary-but-not-really

workarounds and other hackey short-term solutions… to get through

a launch window.

But they’re not viable long-term.

McKinsey noted in their CIO interviews on tech debt, that “Some companies

�nd that actively managing their tech debt frees up engineers to spend

up to 50 percent more of their time on work that supports business goals.

The CIO of a leading cloud provider told us, ‘By reinventing our debt

management, we went from 75% of engineer time paying the [tech debt]

‘tax’ to 25%. It allowed us to be who we are today.’”

Smart dev teams are reinventing their debt management approach.

In doing so they reduce risk, lift morale and deliver positive value. They avoid

taking on the unnecessarily complex development work (and its tech debt

baggage) and instead buy and integrate reusable components, from

specialists.

Assembling specialist components minimizes the ‘owned’ tech debt they

need to carry. The debt that ‘would have’ been generated by building those

complex components, is measurably reduced (if not almost eliminated).

In its place, the potential gain from on-time launches of new features

is realized.

https://agilemanifesto.org/
http://c2.com/doc/oopsla92.html
https://www.tiny.cloud/blog/cost-of-building-rich-text-editor/
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/tech-debt-reclaiming-tech-equity
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance

Does it work? Yes. Assembling maximizes the horsepower behind third-party

specialization, empowers developers to focus on what they do best, minimizes

needless technical debt and delivers the nimbleness to answer market demands for

innovation.

Renowned software developer, author and speaker, Martin Fowler nails it when

he says: “[…] while you’re programming, you are learning. It’s often the case that it can

take a year of programming on a project before you understand what the best design

approach should have been. […]

That’s a crucial part of reinventing your tech debt management. Don’t needlessly

expand your own tech debt through complex builds that other specialists have already

perfected.

Let the specialists manage the bear traps.

https://martinfowler.com/
https://www.tiny.cloud/solutions/content-authoring-tool/

2.2

Open Source: a Plus or Minus for
Tech Debt?

What’s a digital
factory?

Research �rm, McKinsey,

has dubbed a factory-like

tech assembly approach, a

‘digital factory’ – where

a company “brings

together the skills,

processes, and inputs

required to produce high-

quality outputs. […] The

best digital factories can

put a new product

or customer experience

into production in as little

as ten weeks. The

innovation can then

be introduced and scaled

up across the business

in eight to 12 months.”

Old questions still have echoes.

Why would I use open source?

Here’s the new answer: You likely already do.

Today, it’s everywhere. Companies of all sizes — from small Dev teams

to large-scale enterprises — use it frequently. Why? Because when you’re

trying to innovate, fast, open source software (OSS) gives you a head start…

it always has done.

Open innovation isn’t new. The �rst “Oxford English Dictionary” was an open-

source project, and in the 1950s software was distributed free of charge.1

Fast forward several decades and with the emergence of the tech assembly

approach called ‘digital factory’, open source components are increasingly

being used to facilitate faster project completions for both open and

proprietary applications. They’re the outlier X-factor that, used cleverly, can

positively impact growth and digital transformation.

The key is knowing which ones to deploy, in wise ways.

Even McKinsey agrees. During the development of their Developer Velocity

Index (DVI) they said, “… across the entire group of companies surveyed,

a di�erent driver emerged as the biggest di�erentiator for companies within

the top quartile: open-source adoption.”

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/scaling-a-transformative-culture-through-a-digital-factory
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance

Source

Open source code

makes up

70%
of most modern

applications

Open source is frequently the foundation of innovation across the software

industry.

Having transformed from its once heretical roots, it’s now an essential factor

in how enterprises evaluate, use and purchase software to drive their

innovation plans. The rationale is simple: OSS lowers development costs,

decreases time to market, increases developer productivity, and accelerates

innovation.

Billions of lines of code are freely available and shared through a community

of creators, collaborators, and maintainers. As a result, most modern

applications are built using open source components — in many cases, open

source makes up more than 70% of the code.

https://tidelift.com/subscription/the-tidelift-guide-to-managing-open-source
https://opensource.org/history
https://tidelift.com/subscription/video/the-tidelift-approach-to-securing-open-source-dependencies

Source

Digging deeper, the reasoning for open source use is not dissimilar to other

third-party SaaS or software purchases. Open source lets you leverage the

velocity of your dev team talent — by letting them work on company

di�erentiation instead of projects outside your core strategic focus.

Why reinvent the wheel, when others have already perfected it?

With a ‘digital factory’ approach, you assemble an agile software stack that

comprises both open and closed components, which are curated, vetted,

and professionally managed. It saves time, money and boosts your speed-

to-market.

The quality of open source code has certainly improved. In part, that’s due

to the large software companies now contributing to Github, many of whom

use an open core business model, apply OSS development methodologies,

and use established Quality Control (QC) processes.

In 2018, a Tidelift Open Source Survey highlighted that companies of all

sizes use open source components in 92% of their project applications.

Virtually all the organizations surveyed said they use OSS to take advantage

of increased productivity, reduced cost and time to deployment.

It’s obvious that open source continues to drive innovation. At speed.

https://tidelift.com/subscription/the-tidelift-guide-to-managing-open-source
https://www.tiny.cloud/buy-vs-build-whitepaper/
https://www.freecodecamp.org/news/the-top-contributors-to-github-2017-be98ab854e87
https://en.wikipedia.org/wiki/Open-core_model
https://blog.tidelift.com/open-source-is-everywhere-survey-results-part-1

Source

But there’s a downside. The push for faster product launches and redirecting

your developers’ time also forces an open-eyed view of the current situation.

—

The Tidelift guide to

securing your open

source dependencies

Let’s consider just a few of the ways your
team wastes time managing your open source
dependencies rather than developing your
product:

Staying up to date with the latest bugfix
versions.

Moving to a new major version of a framework
or library.

Dealing with bugs or security issues related
to an unmaintained dependency.

Handling requests from your legal department
to list every package you’re using, along
with their licenses.

Documenting everything you use for your
security team and addressing live
vulnerabilities.

https://tidelift.com/subscription/the-tidelift-guide-to-managing-open-source
https://cdn2.hubspot.net/hubfs/4008838/Resources/The-Tidelift-guide-to-securing-your-open-source-dependencies.pdf

What’s Managed
Open Source
Software?

Managed open source

software and components,

maximize the speed-to-

market, while minimizing

potential risks to users.

All license details, security

risks and maintenance

issues are clearly

communicated (if they

occur) and upgrades are

regularly released.

Being honest, that situation isn’t ideal. But commercial development teams

rely on open source to innovate fast.

Then there’s the tech debt burden that open source can generate. In most

closed software, updates are automatically pushed to users. Conversely,

open source uses a pull model where users are responsible for updating.

If you fail to deploy the necessary major, minor or patch updates, you expose

yourself to more hidden tech debt.

What’s the answer? Using professionally managed open source

components.

According to Tidelift, managed open source “… allows application

development teams to speed up development and reduce risk

by outsourcing the management of open source components to the experts

who create and maintain them.”

With a clear process for vetting (Software Bill of Materials, SBoM),

monitoring (automated visibility and control of the OSS) and reusing

(cataloging) open source components, enterprises can reuse OSS and third-

party specialist components to rapidly jump-start their innovation programs.

Managed open source components minimize your tech debt burden.

And are a cheat sheet to your success.

What’s a Software Bill of Materials (SBoM)?

According to Gartner, "SBoMs are an essential tool in your security and compliance toolbox. They help

continuously verify software integrity and alert stakeholders to security vulnerabilities and policy

violations.” They are an increasingly common and critical component of software development lifecycle

(SDLC) and DevSecOps processes.

In 2021 several high-pro�le security breaches prompted the US President to issue an Executive Order

on Cybersecurity, (May 2021). It included a requirement that software vendors provide a SBoM

(Software Bill of Materials) for those selling to the US Federal Government. The order includes a

provision that will require IT vendors to provide an SBOM with software and hardware.

https://cdn2.hubspot.net/hubfs/4008838/Resources/The-Tidelift-guide-to-securing-your-open-source-dependencies.pdf
https://www.techtarget.com/searchsoftwarequality/definition/software-development-life-cycle-SDLC
https://www.techtarget.com/searchitoperations/definition/DevSecOps
https://www.cisa.gov/sbom

2.3

Complexity Breeds Constant
Reinvention

‘ENTER’ KEY
PERFORMS
OVER
100 DIFFEREN
T BASE
ACTIONS

How does complexity play with technical debt?

Rich text editor (RTE) components look simple to build.

In reality, they’re one of the most complex interface components of a tech

stack: visually and technically. Not unexpectedly, their simple exterior belies

the intricate complexities inside.

First, let’s cover the basics. A rich text editor is an interface for editing ‘rich

text’. It’s a crucial component within every organization’s tech stack that

enables rich text editing capabilities within any application — no matter the

type, use case, or device. Now the nitty gritty.

The basic ‘Bold’ text button can have 40+ di�erent calls and interactions.

The ubiquitous ‘Enter’ key performs over 100 di�erent base actions —

depending on where you are in the editor interface and what you’re doing.

That excludes browser compatibility issues or dependencies built into the

product, so the �nal tally is likely double the number of base actions

it performs.

It’s probably obvious by now that rich text editor development requires deep

domain knowledge.

However, it’s not only the main editor’s initial coding and subsequent

refactoring that needs to be done. Each individual plugin (feature), every

linked service, library, or tool, as well as browser changes and APIs, need

to be monitored, reworked, and maintained.

It’s a flywheel in constant motion.

Which makes tracking technical debt in a rich text editor — and even more

importantly, identifying areas that likely have tech debt — very di�cult.

Quantifying the volume and value of that technical debt burden is equally

hard.

Although, there are indications… but they’re not comforting either.

https://www.tiny.cloud/

While the yearly average spend on ‘growth’ (new) activity in the software

industry is 40%, for a rich text editor, it’s 31%. In the area of technical debt,

the industry average spends 18% while a rich text editor carries around 29%

ongoing in technical debt. That’s a lot of tech debt to take on, if you’re not

a domain specialist who knows the right decisions when it comes

to intentional and unintentional tech debt.

—
Stephanie
Ockerman and
Simon Reindl
Mastering Professional

Scrum

Technical Debt is not necessarily a bad
thing — as long as there is a real plan
to pay it off.

Carried carefully though, a certain level of tech debt isn’t a bad thing.

It speeds software development and gets you to a short-term goal — when

that deadline is the most important thing. But for RTEs, coding new

functionality to match upgrades and features in other applications (and

to stop breakages), is an endless cycle.

https://www.stepsize.com/blog/complete-guide-to-technical-debt
https://www.scrum.org/resources/mastering-professional-scrum-book

You need the experience to know when to make the right trade-o�s and decisions,

to capitalize on an opportunity cost. Because the mismanagement of an RTE’s

technical debt can be dire.

Most rich text editor specialists have large teams of developers who work on them

year-round. And that’s all they do. They know when and why it’s the right decision

to take on tech debt and at what point to start paying it down — so that product

development and feature improvements don’t slow.

Take a look inside the most basic components you need to build, test, maintain for

a rich text editor, and the ensuing technical debt you need to manage.

Common rich text editor requirements

Core Functionality

These are the no-frills core parts of a basic (minimum expectation) rich text editor

COMPONENT DESCRIPTION

Contenteditable Selection

Basic Formatting Loading Content

HTML Compliance Input Filtering

Undo Output Filtering

Focus Browser Di�erences

The above requirements cover content and formatting. Next, developers need to
look deeper into what content is made of and how to render that within a rich
text editing environment.

Additional Functionality

These are not often in a core RTE experience, but are frequently requested by end users

COMPONENT DESCRIPTION

Links Images

Embeds Uploading

Lists Advanced Formatting

Tables Emoji

UI Interactions

These UI components a�ect how users interact and work with the editor

COMPONENT DESCRIPTION

UI General UI Dialogs

UI Toolbar Accessibility

UI Buttons Touch Devices (mobile/tablets)

UI Menu Advanced Keyboard Interactions

UI Context Menu

Look and Feel

How the editor looks and how it’s con�gured to meet product requirements

COMPONENT DESCRIPTION

Content Editing Skins and Customizations

Content Published Con�guration

Enterprise Grade Features

These are the advanced features (over and above a core editing experience), that

growing SaaS and enterprises demand for their users

COMPONENT DESCRIPTION

Automated Testing Spell Checking

Human Testing Integration

Localization Performance

Security

A trusted editing environment requires year-round ongoing maintenance – to keep
up with browsers, technologies, changing technologies and how the content is
displayed to its ultimate audience, your readers.

—
Steve McConnell
Managing Technical

Debt White Paper,

Construx Software

Like financial debt, different companies
have different philosophies about the
usefulness of debt. Some companies want
to avoid taking on any debt at all; others
see debt as a useful tool and just want
to know how to use debt wisely.

https://www.construx.com/resources/whitepaper-managing-technical-debt/

2.4

Rich Text Editors Live a Fast Life

Code doesn’t ever really die. But it does decay.

It also has a half-life.

So let’s break this idea open. A useful rule of thumb for tech start-ups

is to assume all the code you write has a half-life equal to the age of your

startup. But that doesn’t apply to every piece of software. Or does it?

Paraphrasing Dan North’s Software that Fits in Your Head talk, Sandi Metz

de�nes the half-life of code phenomenon as, “the amount of time required

for half of an application’s code to change so much that it becomes

unrecognizable.”

Erik Bernhardsson’s ’The half-life of code and the ship of Theseus’ article and

ensuing Git of Theseus project, explore the conundrum further and question

“…does the new code just add up on top of the old code? Or does it replace

the old code slowly, over time? […] There is a ‘Ship of Theseus’ e�ect, but

there’s also a compounding e�ect where codebases keep growing over

time.”

These articles surface a key aspect of building, maintaining and scaling

a rich text editor: its code has a crazy-short half-life. Let’s see what that looks

like.

https://www.youtube.com/watch?v=4Y0tOi7QWqM&feature=youtu.be&t=678
https://sandimetz.com/blog/2017/6/1/the-half-life-of-code
https://erikbern.com/2016/12/05/the-half-life-of-code.html
https://github.com/erikbern/git-of-theseus

The 5-year Half-life of

Code in a Rich Text

Editor: Lines of code,

by yearly cohorts,

across 5 years

This �rst graph (above) plots across 5 years, the aggregate number of lines

of code in a rich text editor, broken down into cohorts by the year added.

It clearly displays the number of sweeping changes needed to maintain the

editor’s competitive position in the marketplace.

The 5-year Aggregate

Decay in a Rich Text

Editor: Individual

commits in a repo, by

yearly cohorts, across 5

years

Next is the aggregate decay for individual commits in the RTE’s core editor

repo (see above). After 5 years, only 30% of the original code remains. The

rest has been refactored, upgraded, repaired or replaced.

The editor in question is more than two decades old and has undergone massive

resets over that time (switching to TypeScript, rewriting the whole UI and

a DOMParser change), yet in the last �ve years both small incremental changes and

large sweeping resets were required to manage the RTE’s technical debt. That’s

a considerable amount of payo� tasks (upgrading, refactoring, repairing) to be done,

every year.

Much of the technical debt accrued by a rich text editor, is driven by the code

complexity, its dependencies, libraries and browser updates.

Browsers unexpectedly update (see Section 2.5) and open source projects constantly

change. Even when no new features are added, a rich text editor must be updated

to deal with changes and new feature releases from Chrome, Safari and Firefox.

Otherwise things break.

Of course, the upside of a short software half-life is it’s sometimes a great trade-o� —

because there’s often instances when code was designed to be rewritten.

Only

30%
of the original code

remains after 5 years

Sandi Metz explains it well in his ‘The Half-Life of Code’ post: “The upsides

of a short code half-life are signi�cant. Imagine how much better your life

would be if your application’s code always reflected the most accurate, up-

to-date understanding of the problem at hand. Think about how much costs

would go down if you never had to navigate dead code. Consider the value

of having an application that is free of speculative additions that were

thrown in to support features that will never arrive.”

For rich text editors, new features do arrive. Frequently. Let’s look at what

the half-life of the code used in some advanced rich text editor plugins looks

like when it’s mapped.

The 5-year Aggregate

Decay in an Advanced

Accessibility Checker

plugin: Individual

commits in a repo, by

yearly cohorts, across 5

years

This graph (above) represents the aggregate decay and half-life of the individual

commits on the connected repos of an advanced accessibility checking plugin. Once

again, after just �ve years, only 25% of the original code remains.

https://sandimetz.com/blog/2017/6/1/the-half-life-of-code

The next graph (below) represents the decay of the connected repos of an

advanced spell checking plugin, where just under 30% of the original code

is left after �ve years.

The 5-year Aggregate

Decay in an Advanced

Spell Checker plugin:

Individual commits in a

repo, by yearly cohorts,

across 5 years

Below is the stacked plot of an advanced tables plugin, for a rich text editor,

across just 3 years, showing the aggregate number of lines of code broken

down into cohorts by the year added. In the space of just 3 years, vast

sweeping changes were required to upgrade the plugin to satisfy user

demands and market changes.

The 3-year Half-life of

Code in a n Advanced

Tables Plugins: Lines of

code, by yearly

cohorts, across 3 years

This �nal graph (below) represents the aggregate decay and half-life of the

individual commits on the connected repos of the same advanced tables

plugin. After three years of constant reworks, a mere 16% of the original

code remains.

The 3-year Aggregate

Decay in an Advanced

Tables plugin Individual

commits in a repo, by

yearly cohorts, across 3

years

What is half-
life?

In nuclear physics, the half-

life of a radioactive

substance refers to the

amount of time taken for

it to reduce (decay) to half.

Similarly, the half-life

of knowledge, information

or facts refers to the

amount of time needed for

half of the knowledge

to become irrelevant

or outdated.

The key role code half-life can play when reviewing a complex code base

is as an indicator of ‘potential’ technical debt.

While it’s a given that untouched code, after enough time, probably needs

work… potential tech debt is tricky. It isn’t always clearly visible (until you try

to read the code) and can give false impressions about the quality and

quantity of the product development and/or incremental work being

considered.

The maps above clearly show there’s lots of ‘potential’ yet to be uncovered

in just about every rich text editor and plugin. Which means, the payo� tasks

for editors are endless. No matter how perfectly the original code was

written.

Returning to Sandi Metz, “If it makes you feel any better, there’s a way

in which having a big mess is a sign of success. The reason your competitors

don’t have messes is that they went out of business. You won, and your prize

is an application that betrays the ravages of time.”

Shame the costs and mess, are irreconcilable.

https://en.wikipedia.org/wiki/Half-life_of_knowledge

—
Alexandre
Omeyer
The Engineer’s

Complete Guide to

Technical Debt,

StepSize

Technical debt — also known as tech debt
or code debt — is what happens when
a development team speeds up the delivery
of a project or functionality that will
require refactoring later on. A quicker
development process becomes the priority
instead of high-quality code.

https://www.stepsize.com/blog/complete-guide-to-technical-debt

2.5

Opportunity Cost of RTE
Technical Debt

All code has technical debt. That’s normal.

Big, small, start-ups and Fortune 500 companies, all carry that debt.

It’s just that some applications generate more than others. So you need

to be more canny.

As McKinsey says, “Companies whose leadership is conversant in technology

matters and has a foundational understanding of what to look for in system-

architecture builds can avoid unintentionally accruing tech debt.

Furthermore, involving senior management and subject-matter experts

at the outset helps address critical IT considerations up front.”

Technical debt should be carefully managed, to ensure its negative

consequences don’t exceed its advantages.

That’s exactly where open source, domain experts and specialist third-party

components can come into your tech stack, to help alleviate your debt

burden — be the debt intentional or unintentional.

Martin Fowler usefully categorised technical debt into four quadrants,

tracking along spectrums based on context and intent — from reckless

to prudent and deliberate to inadvertent:

Deliberately

reckless:

“WE DON’T HAVE TIME FOR DESIGN.”

Inadvertently

reckless:

“WHAT’S LAYERING?”

Deliberately

prudent:

“WE MUST SHIP NOW AND DEAL WITH THE
CONSEQUENCES.”

Inadvertently

prudent:

“NOW WE KNOW HOW WE SHOULD HAVE DONE IT.”

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/tech-forward/the-digital-butterfly-effect-the-big-impact-of-small-decisions
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Source

Each of those quadrants carry di�erent opportunity costs and trade-o�s.

And seemingly small decisions can have big consequences.

The technical debt on the left-hand side of the quadrants should be avoided,

at all cost. The right hand side is where the action happens.

–

5 steps to avoid a

technical debt black

hole, Salesforce

Prudent debt is the corollary of the agile
software development principle that ‘perfect
is the enemy of done’. Prudent debt can
be deliberate: we know we’re going to have
to fix this later. It can be inadvertent:
the world has changed since we made that
choice. Either way, it’s unavoidable — the
objective is to minimise reckless debt and
properly manage prudent debt.

Notice that the goal isn’t to reach zero debt.

Ideally, it’s a ‘Goldilocks level of tech debt’ you want — not too much, not too little. Your

tech debt management plan needs to balance growth and housekeeping, to ensure

you continue delivering value at high speed, without sacri�cing quality.

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://www.salesforce.com/au/blog/2021/10/how-to-avoid-a-technical-debt-black-hole.html

IDEALLY,
IT’S
A ‘GOLDILOCK
S LEVEL
OF TECH
DEBT’ YOU
WANT — NOT
TOO MUCH,
NOT TOO
LITTLE.

As Hackernoon clearly puts it in their tech debt guide, “ A rushed

development means that the code base has certain de�ciencies that

a programmer will have to rework or clean up later on. These de�ciencies,

also called ‘cruft’, a�ect the overall code quality, and although the software

can still function, it cannot reach its full potential until someone �xes the

de�ciencies.”

But sometimes, cruft and technical debt arrives unexpectedly.

During 2021, 43 updates occurred in the Chrome browser, with

117 signi�cant changes. That means the Chrome browser you used at the

beginning of 2021 is di�erent from the one you used at the end of the year,

in at least 117 ways. Likewise, Mozilla released 10 updates over 2021, with

94 changes made to Firefox (Versions 85-94). Apple only had 3 updates for

Safari (Version 15) in 2021. By any measure, all these browsers

dramatically changed in a single year.

Likewise, WordPress, the most commonly used web content management

system had 6 updates with 12 signi�cant changes and 1 major (new

generation) release.

Although, these numbers aren’t unique to 2021.

Every layer of a web development stack undergoes signi�cant change each

year, and the rich text editors that rely on those applications need

to immediately accommodate those adjustments. There’s no advance

warning. It can be as simple as a security patch, or a fundamental

refectoring of the code base.

You just never know.

In the past 4 years, on average there’s been 8 forced �xes/patches each

year, on rich text editors and their dependent plugins features, to address

unexpected changes in browser behaviour.

Rich Text Editor Unplanned Fixes/Patches
to Address Browser Changes

2018 2019 2020 2021

8 8 9 6

https://hackernoon.com/understanding-technical-debt-as-a-software-engineer-gz223z2o

With the release of every patch, it’s not just a simple code adjustment and

pushing it out. Each time, testing must be done to check browser

compatibility.

There are at least two desktop OS to test (Windows and OSX) and two

mobile OS (Android, IOS), plus iPad, Tablet and Hybrid across multiple

browsers (Chrome, Safari, Firefox/Mozilla) and screen resolutions.

Minimum Browser Compatibility Testing
for Rich Text Editor Releases

DESKTOP OS

Windows

Chrome

Windows Edge2

OSX Safari

Windows

FireFox

OSX Chrome

OSX FireFox

MOBILE

iOS Safari

(Mobile)

Android

Chrome

(Mobile)

iPAD

iOS Safari

(iPad)

TABLET

Android

Chrome

(Tablet)

HYBRID

Windows

Surface

(Hybrid)

ChromeBook

(Hybrid)

All this mushrooms the Total Cost of Ownership (TCO) of a rich text editor

and consumes resources: people, time and money.

Every release (Major, Minor and Patch) requires QA testing, prior to being

released and depending on the priority and severity of the items within the

release scope and other project risks, the launch may be delayed.

Code rewrites ensue, then back through QA for repeat testing. Every. Single.

Time.

https://semver.org/

QA Testing for Rich Text Editor Releases3

Out of Scope: Dev tasks related to technical debt

The People Cost
of Technical Debt

A recent survey by Stepsize

uncovered that technical

debt leads to employee

churn.

More than half of the

Engineers (51%) surveyed

had left a company

or considered leaving

a company due to large

amounts of technical debt,

and 20% said that

technical debt is the

primary reason for them

to leave a company.

However if unattended, both forced and unforced changes generate tech

debt.

Today’s code becomes slightly out of date, very fast. Within days,

sometimes. While the code may not decay (as it does with half-life), the

environment in which it functions continues to change at a blistering speed.

Cost drives much of today’s technology.

The typical cost of managing the technical debt generated by a rich text

editor — and its advanced feature plugins — isn’t small. Even discussing the

possibility of adding some functionality or �xing a bug and then deciding not

to do it, takes time.

And the more rework you have to do, the higher the price tag and

opportunities lost.

That’s the butterfly e�ect of technical debt decisions.

MAJOR MINOR PATCH

Breaking changes (

incompatible API changes)

New features Improvements

Bug �xes

Security patches

New features

Improvements

Bug �xes

Security patches

Bug �xes

Security patches

Yearly Quarterly Ad-hoc

2-3 weeks

(10-15 business days)

2-3 weeks

(10-15 business days)

1-2 days

https://www.stepsize.com/how-codebase-health-impacts-hiring-and-retention-2021-report

2.6

Even the Best Creates Cruft

58%
of a developer’s time is

spent on code

comprehension

Quality code.

It’s not cruft-free: even the best carries cruft.

An accepted shorthand for many things, cruft is (generally speaking) some

form of debt that eventually needs to be paid. Martin Fowler de�nes cruft

as “Software systems are prone to the build up of cruft – de�ciencies

in internal quality that make it harder than it would ideally be to modify and

extend the system further.”

Sounds like technical debt.

Cruft also includes “…‘things’ that were left temporarily in the system during

the previous iteration. Also, cruft refers to any code that is not necessary

to perform the task it was designed for or forgotten code without any utility.

Although cruft does not mean a code bug, it makes the code harder

to maintain or to read and creates technical debt.”

And we all know that hard to read code, eventually equals technical debt.

A Mcrosoft study in 2017 concluded that 58% of a developer’s time is spent

on code comprehension, especially once the software is shipped and has

to be maintained. It’s something most developers intuitively know: “…the less

you’re familiar with the code, the longer it takes. The more surprises are

in your way, the longer it takes. The harder it is to reproduce all scenarios, the

longer it takes to get it right.”

That’s not uncommon in large, complex projects, like rich text editors, with

anywhere from 484,093 to 270,122 lines of code (LOC). Di�erent

languages are used, multiple developers are coding, all with di�erent

approaches. That spells eventual tech debt.

https://martinfowler.com/bliki/TechnicalDebt.html
https://medium.com/swlh/software-cruft-28ae5e766e98
https://www.researchgate.net/publication/318811113_Measuring_Program_Comprehension_A_Large-Scale_Field_Study_with_Professionals
https://www.tiny.cloud/buy-vs-build-whitepaper/

What does
an advanced clean
copy-paste
feature do?

An advanced copy-paste

plugin helps users cleanly

transfer content from its

source to the rich text

editor (the destination).

Ideally, it should

automatically parse the

content for security

vulnerabilities, remove

unnecessary style elements

as well as generally clean

up and modernize the

background HTML.

Read more �

But it also happens in single (but complex) advanced features. When

a feature carries dependencies on dependencies to perform its functions, it’s

di�cult to e�ectively review every single line of code, all the time.

So cruft and tech debt creeps into the code.

As the feature expands its capabilities (adding 99% accurate clean-copy-

paste from Google Doc sources), or improvements are made in rushed

timelines, then corners are sometimes cut and compromises made to forsake

quality in favour of speed. Or there’s instances when the code needs

to be written so that every related app can continue, and the code quality

su�ers.

New discoveries also drive change — the things you didn’t know about when

you �rst set out to solve a problem for your users, like providing a 99%

accurate clean-copy-paste function.

CASE STUDY

Advanced clean-copy-paste plugin feature

TL;DR

The Word import component of an advanced copy-paste plugin

(originally built in the early 2000s for a Java-based editor), was

subsequently recompiled directly to JavaScript using Google Web

Toolkit. By 2016 that technology was a decade old and had become

unmaintainable. A rewrite was approved in 2016-17.

Triggers for the rewrite were: Large tech debt burden, poor code

legibility, high maintenance, code decay.

https://www.tiny.cloud/blog/copy-paste-function-cost-estimate
https://www.tiny.cloud/blog/women-in-digital-finalist-2021/

SCOPE

A single, advanced clean-copy paste feature for a rich text editor:

39836 lines of code4

40 libraries

18 open source inhouse libraries

12 private libraries

8 third-party open source libraries

2 compilers (TypeScript and OCaml)

TECHNICAL DEBT/ISSUES

The original component was written in Java by an outsourced

developer and looked more like C. It was poorly written and while users

loved its performance, the maintenance became increasingly di�cult.

Particularly towards the end of its life, developers struggled to �x

even minor problems – choosing to create workarounds rather than �x

the component directly.

When building the new component in 2017, it was again decided not

to build it in JavaScript directly, but rather use OCaml and compile to

JavaScript. The resultant code was much better structured, used

modern architectures and design to improve its base functionality.

However, it too has its limitations, which is why another round of

rewrites is now being considered, �ve years later.

It seems technical debt and cruft gets the better of us all.

Even when you’re the best.

2.7

Hard Choices are Opportunities

Choices need to be made.

— INNOVATION.

— TECHNICAL DEBT.

— SPEED-TO-MARKET.

— OPEN SOURCE.

— BUY. BUILD.

— ASSEMBLE.

The companies focused on rapid transformation, have already made the

choice: swift innovation and continuous deployment. And they’re growing.

Fast.

By using specialist components.

Rapid-�re changes in customer expectations, business models and

technology, are accelerating the pressure on companies to innovate. And

the death and decay of countless big innovators (Blackberry, Kodak and

Netscape) are constant reminders that even big, successful companies can

and do disappear. Easily.

Roughly a third of new businesses exit within their �rst two years, and half

exit within their �rst �ve years. Even the average lifespan

of S&P 500 companies has dropped from 75 (1950s) to 19 years (2022)

and continues to fall.

So it’s innovate or be replaced. But how do you know who to trust?

In every development project, software evaluation is a critical piece of the

puzzle — whether you’re using open source or third-party closed

components. It’s a tricky balancing act between hard objectivity and

subjective (but valid) individual user experience.

Here’s some thought-starters. For open source components, evaluation

criteria that are often used:

1. The number of developers working on the OSS

2. The number of downloads of the software

3. The developer’s satisfaction

4. The level of activity on the project

5. The time between consequent releases

http://ganchase.com/institute/research/small-business/small-business-dashboard/longevity
https://www.statista.com/statistics/1259275/average-company-lifespan/#:~:text=In%202020%2C%20the%20average%20lifespan,even%20further%20throughout%20the%202020s.

Assessment
Criteria for Open
Source Software

According to IGI-Global,

“Since the code is available

to everybody it can

be reviewed and assessed

by using traditional

methodologies that

measure the level

of understanding,

completeness, conciseness,

portability, consistency,

maintainability, testability,

usability, reliability,

structuredness and

e�ciency. These

assessments can be done

by everybody who

is interested in the quality

of the OSS.”

6. The time to close bugs

7. The security protocols in place

8. The reputation in the community

9. The quality control processes used

These are added to the characteristics you already use to measure closed

source software.

Other areas to consider when evaluating both open and closed components:

Is the development team familiar with the technology?

Are large enterprises using the technology (ie. Fortune 500)?

Does the technology provide features that do not currently exist?

Does the technology have a strong capital backing (> USD$20M)

or is it backed by a global corporation (Facebook, Google, IBM, Apple)?

At what speed is the technology growing?

How much interest has been received from users?

How much interest has been received from the community?

How popular is the technology with the number of stars on GitHub

(if applicable)?

Is there a partnership that can be developed with the technology?

Will this be an open-source project?

Does the technology allow us to provide features that do not currently

exist?

Have sales or existing users been lost, because of the lack of this

technology?

What type of feature (business model) will this be?

How long will it take to build an MVP of the technology?

How long will it take to build version 1.0 of the technology?

https://www.igi-global.com/chapter/open-source-assessment-methodologies/36509

Having an established process helps to minimize the unseen technical debt

and code decay you’re taking on, while still allowing you to rapidly jump-start

your innovation programs. Incorporate the following seven areas into that

process:

1. Clear in-house process for vetting and pre-approving

components (eg. Software Bill of Materials, SBoM)

2. Ongoing monitoring (eg. automated visibility and control

of the components)

3. Reusable tech stack composed of pre-approved and

vetted components (eg. cataloguing and building

repositories)

4. Clear licensing

5. Security protocols

6. QC standards

7. Service agreements

By curating a repository of vetted, pre-approved components and release

versions (open source, purchased and subscribed), you’re minimizing

security exposures, ongoing maintenance and technical debt accumulation.

The components can be safely used and reused within your tech stack,

across the enterprise.

That allows development to quickly move more safely, and avoids last-

minute blockers during a development cycle.

Returning to where we began, with the Stripe Developer Coe�cient Report,

“…businesses need to better leverage their existing software engineering

talent if they want to move faster, build new products, and tap into new and

emerging trends.”

Assembling pre-approved specialist components gives you the opportunity

to safely walk the tightrope between technical debt and innovation.

And it maximizes your opportunity cost.

https://stripe.com/files/reports/the-developer-coefficient.pdf

3.0 The Unfortunate Truth
This brings us to an unfortunate truth.

An uncomfortable truth.

That fully paying o� your tech debt is highly unusual.

And undesirable.

The alternate story, within this white paper, describes a reinvention of your

tech debt management — to help minimize your ‘owned’ technical debt.

That way, you sidestep making your debt hole deeper.

By tapping the domain expertise of specialists who’ve already perfected the

technology you need, you avoid the trap of needlessly accruing tech debt.

And the complex code and maintenance work that’s outside your strategic

focus.

It reduces risk, lifts morale and delivers positive value.

By buying proven, reusable components that have built-in scalability, you’re

creating reusable foundations for your future applications.

And exponential growth.

© Tiny Technologies 2022

TINY TECHNOLOGIES

Tiny is the creator of TinyMCE, the world’s most trusted WYSIWYG component that

enables rich text editing capabilities within an application. Scalable, adaptable and

reusable, it powers 100M+ projects worldwide and more than 1.5M+ developers use

it to add velocity to their tech stacks, so they can build and ship their projects faster.

There’s tens of thousands of market-leading applications powered by Tiny globally. It’s

helped SaaS companies, large enterprises, content creators and publishers to launch,

grow and scale their businesses, reduce their development and technical debt

burdens, minimize ongoing support tickets and boost the productivity of their users.

